
Go (#golang) and MongoDB using mgo
October 14, 2012
After working in node.js last year, I've switched to learning Go instead, and I wanted to reprise my "Node.js and MongoDB: A Simple
Example" post in Go. Of all the Go drivers available for mongoDB, mgo is the most advanced and well-maintained. The example on the mgo
main page is easy to understand:

1. Create a struct which matches the BSON documents in the database collection you want to access
2. Obtain a session using the Dial function, which creates a connection object
3. Use the connection object to access a particular collection in your database:

Searches load documents from the database into the struct
Inserts and updates take data defined in a struct and create/update documents in the database

So for a collection named "Person", where a typical document looks like this:

{
 "_id" : ObjectId("502fbbd6fec1300be858767e"),
 "lastName" : "Seba",
 "firstName" : "Jun",
 "inserted" : ISODate("2012-08-18T15:59:18.646Z")
}

The corresponding Go struct would be:

type Person struct {
 Id bson.ObjectId "_id,omitempty"
 FirstName string "firstName"
 MiddleName string "middleName,omitempty"
 LastName string "lastName"
 Inserted time.Time "inserted"
}

It turns out the third field in each line, the string literal tag which is normally optional in a Go struct, is required here, because mgo won't find
those fields in the database otherwise. It's also possible to convert database results directly into json, which is useful for creating API
services that output json. In that case, it's necessary to define both a bson tag and a json one, surrounded by backticks:

type Person struct {
 Id bson.ObjectId `bson:"_id,omitempty" json:"-"`
 FirstName string `bson:"firstName" json:"firstName"`
 MiddleName string `bson:"middleName,omitempty" json:"middleName,omitempty"`
 LastName string `bson:"lastName" json:"lastName"`
 Inserted time.Time `bson:"inserted" json:"-"`
}

The json tag follows the conventions of the built-in Go json package: "-" means ignore, "omitempty" will exclude the field if its value is
empty, etc. So far so good. But accessing different collections in a database means that for each one: it has its own struct defined, it has its
own connection with the collection name specified, and an access function (Find, Insert, Remove, etc.) which marshals/unmarshals those
results. And the last step in particular can lead to a lot of code repetition. Inspired by Alexander Luya's post on mgo-users, I've created a
framework that allows for multiple access functions with a minimum of repetiton. First, this function, which creates or clones the call to Dial()
as needed (this is very similar to what Alex posted):

var (
 mgoSession *mgo.Session
 databaseName = "myDB"
)

func getSession () *mgo.Session {
 if mgoSession == nil {
 var err error
 mgoSession, err = mgo.Dial("localhost")
 if err != nil {
 panic(err) // no, not really
 }
 }
 return mgoSession.Clone()
}

Next, a higher-order function which takes a collection name and an access function prepared to act on that collection:

http://nodejs.org/
http://blog.jgc.org/2012/05/to-boldly-go-where-node-man-has-gone.html
http://denis.papathanasiou.org/?p=704
http://golang.org/
http://www.mongodb.org/display/DOCS/Drivers
http://labix.org/mgo
http://labix.org/mgo
http://golang.org/ref/spec#Struct_types
http://www.mongodb.org/display/DOCS/Tutorial#Tutorial-DynamicSchema%28%22SchemaFree%22%29
http://go.pkgdoc.org/labix.org/v2/mgo#Dial
http://json.org/
https://github.com/dpapathanasiou/go-api
http://golang.org/pkg/encoding/json/#Marshal
http://go.pkgdoc.org/labix.org/v2/mgo#Collection.Find
http://go.pkgdoc.org/labix.org/v2/mgo#Collection.Insert
http://go.pkgdoc.org/labix.org/v2/mgo#Collection.Remove
https://groups.google.com/group/mgo-users/msg/fe1e9f1e03096729?hl=en
https://groups.google.com/group/mgo-users?hl=en
http://go.pkgdoc.org/labix.org/v2/mgo#Dial

func withCollection(collection string, s func(*mgo.Collection) error) error {
 session := getSession()
 defer session.Close()
 c := session.DB(databaseName).C(collection)
 return s(c)
}

The withCollection() function takes the name of the collection, along with a function that expects the connection object to that collection, and
can execute access functions on it. Here's how the "Person" collection can be searched, using the withCollection() function:

func SearchPerson (q interface{}, skip int, limit int) (searchResults []Person, searchErr string) {
 searchErr = ""
 searchResults = []Person{}
 query := func(c *mgo.Collection) error {
 fn := c.Find(q).Skip(skip).Limit(limit).All(&searchResults)
 if limit < 0 {
 fn = c.Find(q).Skip(skip).All(&searchResults)
 }
 return fn
 }
 search := func() error {
 return withCollection("person", query)
 }
 err := search()
 if err != nil {
 searchErr = "Database Error"
 }
 return
}

The skip and limit parameters are optional in that if skip is set to zero, it is effectively asking for all the results, and, similarly, if limit is set to
an integer less than zero, it is ignored in the query that gets invoked inside the withCollection() function. So with that framework in place,
making a variety of different queries on the "Person" collection reduces to writing simple (often one-line) BSON queries, as in the following
examples. (1) Get all people whose last name beings with a particular string:

func GetPersonByLastName (lastName string, skip int, limit int) (searchResults []Person, searchErr string) {
 searchResults, searchErr = SearchPerson(bson.M{"lastName": bson.RegEx{"^"+lastName, "i"}}, skip, limit)
 return
}

(2) Get all people whose last name is exactly the given string:

func GetPersonByExactLastName (lastName string, skip int, limit int) (searchResults []Person, searchErr stri
ng) {
 searchResults, searchErr = SearchPerson(bson.M{"lastName": lastName}, skip, limit)
 return
}

(3) Find people whose first and last names being with the particular strings:

func GetPersonByFullName (lastName string, firstName string, skip int, limit int) (searchResults []Person, s
earchErr string) {
 searchResults, searchErr = SearchPerson(bson.M{
 "lastName": bson.RegEx{"^"+lastName, "i"},
 "firstName": bson.RegEx{"^"+firstName, "i"}}, skip, limit)
 return
}

(4) Find people whose first and last names match with first and last names exactly:

func GetPersonByExactFullName (lastName string, firstName string, skip int, limit int) (searchResults []Pers
on, searchErr string) {
 searchResults, searchErr = SearchPerson(bson.M{"lastName": lastName, "firstName": firstName}, skip, limi
t)
 return
}

et. cetera. As far as code repetition goes, however, this framework is not that efficient in that each collection requires its own
Search[Collection]() function, where the only difference among the different functions is the type of the searchResults variable. It would be
tempting to write something like this:

func Search (collectionName string, q interface{}, skip int, limit int) (searchResults []interface{}, search
Err string) {
 searchErr = ""
 query := func(c *mgo.Collection) error {
 fn := c.Find(q).Skip(skip).Limit(limit).All(&searchResults)
 if limit < 0 {
 fn = c.Find(q).Skip(skip).All(&searchResults)
 }
 return fn
 }
 search := func() error {
 return withCollection(collectionName, query)
 }
 err := search()
 if err != nil {
 searchErr = "Database Error"
 }
 return
}

Except this is where Go's strong typing gets in the way: "there's no magic that would turn an interface{} into a Person" , and so each
Search[Collection]() function has to be written separately.

Archived from the original at http://denis.papathanasiou.org/
 Bitcoin Donate: 14TM4ADKJbaGEi8Qr8dh4KfPBQmjTshkZ2

https://groups.google.com/group/mgo-users/msg/c6226894a33e95d7?hl=en
http://denis.papathanasiou.org/
bitcoin:14TM4ADKJbaGEi8Qr8dh4KfPBQmjTshkZ2

	Go (#golang) and MongoDB using mgo
	October 14, 2012

